Neuroscience

Articles and news from the latest research reports.

132 notes

Researchers discover the brain origins of variation in pathological anxiety
New findings from nonhuman primates suggest that an overactive core circuit in the brain, and its interaction with other specialized circuits, accounts for the variability in symptoms shown by patients with severe anxiety. In a brain-imaging study published in the Proceedings of the National Academy of Sciences (PNAS), researchers from the University of Wisconsin School of Medicine and Public Health describe work that for the first time provides an understanding of the root causes of clinical variability in anxiety disorders.
Using a well-established nonhuman primate model of childhood anxiety, the scientists identified a core circuit that is chronically over-active in all anxious individuals, regardless of their particular pattern of symptoms. They also identified a set of more specialized circuits that are over- or under-active in individuals prone to particular symptoms, such as chronically high levels of the stress-hormone cortisol.
“These findings provide important new insights into altered brain functioning that explains why people with anxiety have such different symptoms and clinical presentations, and it also gives us new ideas, based on an understanding of altered brain function, for helping people with different types of anxiety,’’ says Ned Kalin, senior author, chair of Psychiatry and director of the HealthEmotions Research Institute.
“There is a large need for new treatment strategies, because our current treatments don’t work well for many anxious adults and children who come to us for help.”
In the study, key anxiety-related symptoms were measured in 238 young rhesus monkeys using behavioral and hormonal measurement procedures similar to those routinely used to assess extreme shyness in children. Young monkeys are ideally suited for these studies because of their similarities in brain development and social behavior, Kalin notes. Variation in brain activity was quantified in the monkeys using positron emission tomography (PET) imaging, a method that is also used in humans.
Combining behavioral measures of shyness, physiological measures of the stress-hormone cortisol, and brain metabolic imaging, co-lead authors Alexander Shackman, Andrew Fox and their collaborators showed that a core neural system marked by elevated activity in the central nucleus of the amygdala was a consistent brain signature shared by young monkeys with chronically high levels of anxiety. This was true despite striking differences across monkeys in the predominance of particular anxiety-related symptoms.
The Wisconsin researchers also showed that young monkeys with particular anxiety profiles, such as high levels of shyness, showed changes in symptom-specific brain circuits. Finally, Shackman, Fox and colleagues uncovered evidence that the two kinds of brain circuits, one shared by all anxious individuals, the other specific to those with particular symptoms, work together to produce different presentations of pathological anxiety.
The new study builds upon earlier work by the Kalin laboratory demonstrating that activity in the amygdala is strongly shaped by early-life experiences, such as parenting and social interactions. They hypothesize that extreme anxiety stems from problems with the normal maturation of brain systems involved in emotional learning, which suggests that anxious children have difficulty learning to effectively regulate brain anxiety circuits. Taken together, this line of research sets the stage for improved strategies for preventing extreme childhood anxiety from blossoming into full-blown anxiety disorders.
“This means the amygdala is an extremely attractive target for new, broad-spectrum anxiety treatments,’’ says Shackman. “The central nucleus of the amygdala is a uniquely malleable substrate for anxiety, one that can help to trigger a wide range of symptoms.”
The work also suggests more specific brain targets for different symptom profiles. Such therapies could range from new, more selectively targeted medications to intensive therapies that seek to re-train the amygdala, ranging from conventional cognitive-behavioral therapies to training in mindfulness and other techniques, Shackman noted. To further understand the clinical significance of these observations, the laboratory is conducting a parallel study in young children suffering from anxiety disorders.

Researchers discover the brain origins of variation in pathological anxiety

New findings from nonhuman primates suggest that an overactive core circuit in the brain, and its interaction with other specialized circuits, accounts for the variability in symptoms shown by patients with severe anxiety. In a brain-imaging study published in the Proceedings of the National Academy of Sciences (PNAS), researchers from the University of Wisconsin School of Medicine and Public Health describe work that for the first time provides an understanding of the root causes of clinical variability in anxiety disorders.

Using a well-established nonhuman primate model of childhood anxiety, the scientists identified a core circuit that is chronically over-active in all anxious individuals, regardless of their particular pattern of symptoms. They also identified a set of more specialized circuits that are over- or under-active in individuals prone to particular symptoms, such as chronically high levels of the stress-hormone cortisol.

“These findings provide important new insights into altered brain functioning that explains why people with anxiety have such different symptoms and clinical presentations, and it also gives us new ideas, based on an understanding of altered brain function, for helping people with different types of anxiety,’’ says Ned Kalin, senior author, chair of Psychiatry and director of the HealthEmotions Research Institute.

“There is a large need for new treatment strategies, because our current treatments don’t work well for many anxious adults and children who come to us for help.”

In the study, key anxiety-related symptoms were measured in 238 young rhesus monkeys using behavioral and hormonal measurement procedures similar to those routinely used to assess extreme shyness in children. Young monkeys are ideally suited for these studies because of their similarities in brain development and social behavior, Kalin notes. Variation in brain activity was quantified in the monkeys using positron emission tomography (PET) imaging, a method that is also used in humans.

Combining behavioral measures of shyness, physiological measures of the stress-hormone cortisol, and brain metabolic imaging, co-lead authors Alexander Shackman, Andrew Fox and their collaborators showed that a core neural system marked by elevated activity in the central nucleus of the amygdala was a consistent brain signature shared by young monkeys with chronically high levels of anxiety. This was true despite striking differences across monkeys in the predominance of particular anxiety-related symptoms.

The Wisconsin researchers also showed that young monkeys with particular anxiety profiles, such as high levels of shyness, showed changes in symptom-specific brain circuits. Finally, Shackman, Fox and colleagues uncovered evidence that the two kinds of brain circuits, one shared by all anxious individuals, the other specific to those with particular symptoms, work together to produce different presentations of pathological anxiety.

The new study builds upon earlier work by the Kalin laboratory demonstrating that activity in the amygdala is strongly shaped by early-life experiences, such as parenting and social interactions. They hypothesize that extreme anxiety stems from problems with the normal maturation of brain systems involved in emotional learning, which suggests that anxious children have difficulty learning to effectively regulate brain anxiety circuits. Taken together, this line of research sets the stage for improved strategies for preventing extreme childhood anxiety from blossoming into full-blown anxiety disorders.

“This means the amygdala is an extremely attractive target for new, broad-spectrum anxiety treatments,’’ says Shackman. “The central nucleus of the amygdala is a uniquely malleable substrate for anxiety, one that can help to trigger a wide range of symptoms.”

The work also suggests more specific brain targets for different symptom profiles. Such therapies could range from new, more selectively targeted medications to intensive therapies that seek to re-train the amygdala, ranging from conventional cognitive-behavioral therapies to training in mindfulness and other techniques, Shackman noted. To further understand the clinical significance of these observations, the laboratory is conducting a parallel study in young children suffering from anxiety disorders.

Filed under anxiety disorders pathological anxiety brain function brain circuits primates animal model psychology neuroscience science

  1. jasonalanjr reblogged this from wingknots
  2. wingknots reblogged this from neurosciencestuff
  3. coolyb reblogged this from anesthetiquette
  4. anesthetiquette reblogged this from neurosciencestuff
  5. psychhealth reblogged this from neurosciencestuff
  6. joseloramos reblogged this from neurosciencestuff
  7. elfmachinez reblogged this from neurosciencestuff
  8. livingbetweennaps reblogged this from neurosciencestuff
  9. peanutbutterfiles reblogged this from teamfivey
  10. raahalexx reblogged this from teamfivey
  11. dermoosealini reblogged this from neurosciencestuff
  12. discoteq reblogged this from neurosciencestuff
  13. cyborgsdonthavetimeforthat reblogged this from neurosciencestuff
  14. infinityandsciencestuff reblogged this from neurosciencestuff
  15. be-ice-cream-or-be-nothing reblogged this from neurosciencestuff
  16. on-reflection reblogged this from neurosciencestuff
  17. inhabittheinbetween reblogged this from neurosciencestuff
  18. teamfivey reblogged this from neurosciencestuff
  19. mirrormuscleman reblogged this from neurosciencestuff
free counters