Neuroscience

Articles and news from the latest research reports.

224 notes

The Hidden Costs of Cognitive Enhancement
Gentle electrical zaps to the brain can accelerate learning and boost performance on a wide range of mental tasks, scientists have reported in recent years. But a new study suggests there may be a hidden price: Gains in one aspect of cognition may come with deficits in another.
Researchers who study transcranial electrical stimulation, which uses electrodes placed on the scalp, see it as a potentially promising way to enhance cognition in neurological patients, struggling students, and perhaps even ordinary people. Scientists have used it to speed up rehab in people whose speech or movement has been affected by a stroke, and DARPA has studied it as a way to accelerate learning in intelligence analysts or soldiers on the lookout for bad guys and bombs.
Until now, the papers coming out of this field have reported one good-news finding after another.
“This is the first paper to my knowledge to show a cost associated with the gains in cognitive function,” said neuropsychologist Rex Jung of the University of New Mexico, who was not associated with the study. “It’s a really nice demonstration.”
Cognitive neuroscientist Roi Cohen Kadosh of the University of Oxford, who led the study, has been investigating brain stimulation to boost mathematical abilities. He has applied for a patent on a brain stimulator he hopes could help math-challenged students get a better grip on the basics, or even help the mathematically inclined perform even better.
Cohen Kadosh and his colleague Teresa Iuculano investigated 19 volunteers as they learned a new numerical system by trial and error. The new system was based on arbitrary symbols: A cylinder represented the number five, for example, and a triangle represented the number nine. In several training sessions the volunteers viewed pairs of symbols on a computer screen and pressed a key to indicate which one represented a bigger quantity. At first they had to guess, but they eventually learned which symbols corresponded with which numbers.
All of the volunteers wore electrodes on their scalp during these training session. Some received mild electrical stimulation that targeted the posterior parietal cortex, an area implicated in previous studies of numerical cognition. Others received stimulation of the dorsolateral prefrontal cortex, an area involved in a wide range of functions, including learning and memory. A third group received sham stimulation that caused a slight tingling of the skin but no change in brain activity.
Those who had the parietal area involved in numerical cognition stimulated learned the new number system more quickly than those who got sham stimulation, the researchers report in the Journal of Neuroscience. But at the end of the weeklong study their reaction times were slower when they had to put their newfound knowledge to use to solve a new task that they hadn’t seen during the training sessions. ”They had trouble accessing what they’d learned,” Cohen Kadosh said.
The volunteers who had the prefrontal area involved in learning and memory stimulated showed the opposite pattern. They were slower than the control group to learn the new numerical system, but they performed faster on the new test at the end of the experiment. The bottom line, says Cohen Kadosh, is that stimulating either brain region had both benefits and drawbacks. ”Just like with drugs, there seem to be side effects,” he said.
Going forward, Cohen Kadosh says, more work is needed on how to maximize the benefits and minimize the costs of electrical brain stimulation. He thinks the approach has promise, but only when it’s used strategically, by picking the right brain regions to target and stimulating them while a person is training on the skill they want to improve. ”I think it’s going to be useless unless you pair it with some type of cognitive training,” he said.
But that’s not stopping some people from giving it a try on their own. Although it should be obvious that DIY brain stimulation is a bad idea, both Jung and Cohen Kadosh say there seems to be growing interest in the general public in using it for cognitive enhancement.
“There are some do it yourself websites I’ve stumbled across that are pretty frightening,” Jung said. “People are definitely tinkering around with this in their garage.”
The new study suggests one way that could backfire. And that’s not all, said Jung. ”You can burn yourself if nothing else.”

The Hidden Costs of Cognitive Enhancement

Gentle electrical zaps to the brain can accelerate learning and boost performance on a wide range of mental tasks, scientists have reported in recent years. But a new study suggests there may be a hidden price: Gains in one aspect of cognition may come with deficits in another.

Researchers who study transcranial electrical stimulation, which uses electrodes placed on the scalp, see it as a potentially promising way to enhance cognition in neurological patients, struggling students, and perhaps even ordinary people. Scientists have used it to speed up rehab in people whose speech or movement has been affected by a stroke, and DARPA has studied it as a way to accelerate learning in intelligence analysts or soldiers on the lookout for bad guys and bombs.

Until now, the papers coming out of this field have reported one good-news finding after another.

“This is the first paper to my knowledge to show a cost associated with the gains in cognitive function,” said neuropsychologist Rex Jung of the University of New Mexico, who was not associated with the study. “It’s a really nice demonstration.”

Cognitive neuroscientist Roi Cohen Kadosh of the University of Oxford, who led the study, has been investigating brain stimulation to boost mathematical abilities. He has applied for a patent on a brain stimulator he hopes could help math-challenged students get a better grip on the basics, or even help the mathematically inclined perform even better.

Cohen Kadosh and his colleague Teresa Iuculano investigated 19 volunteers as they learned a new numerical system by trial and error. The new system was based on arbitrary symbols: A cylinder represented the number five, for example, and a triangle represented the number nine. In several training sessions the volunteers viewed pairs of symbols on a computer screen and pressed a key to indicate which one represented a bigger quantity. At first they had to guess, but they eventually learned which symbols corresponded with which numbers.

All of the volunteers wore electrodes on their scalp during these training session. Some received mild electrical stimulation that targeted the posterior parietal cortex, an area implicated in previous studies of numerical cognition. Others received stimulation of the dorsolateral prefrontal cortex, an area involved in a wide range of functions, including learning and memory. A third group received sham stimulation that caused a slight tingling of the skin but no change in brain activity.

Those who had the parietal area involved in numerical cognition stimulated learned the new number system more quickly than those who got sham stimulation, the researchers report in the Journal of Neuroscience. But at the end of the weeklong study their reaction times were slower when they had to put their newfound knowledge to use to solve a new task that they hadn’t seen during the training sessions. ”They had trouble accessing what they’d learned,” Cohen Kadosh said.

The volunteers who had the prefrontal area involved in learning and memory stimulated showed the opposite pattern. They were slower than the control group to learn the new numerical system, but they performed faster on the new test at the end of the experiment. The bottom line, says Cohen Kadosh, is that stimulating either brain region had both benefits and drawbacks. ”Just like with drugs, there seem to be side effects,” he said.

Going forward, Cohen Kadosh says, more work is needed on how to maximize the benefits and minimize the costs of electrical brain stimulation. He thinks the approach has promise, but only when it’s used strategically, by picking the right brain regions to target and stimulating them while a person is training on the skill they want to improve. ”I think it’s going to be useless unless you pair it with some type of cognitive training,” he said.

But that’s not stopping some people from giving it a try on their own. Although it should be obvious that DIY brain stimulation is a bad idea, both Jung and Cohen Kadosh say there seems to be growing interest in the general public in using it for cognitive enhancement.

“There are some do it yourself websites I’ve stumbled across that are pretty frightening,” Jung said. “People are definitely tinkering around with this in their garage.”

The new study suggests one way that could backfire. And that’s not all, said Jung. ”You can burn yourself if nothing else.”

Filed under transcranial electrical stimulation cognition cognitive function brain stimulation parietal cortex learning neuroscience science

  1. thepatri-yids reblogged this from buffbon
  2. buffbon reblogged this from neurosciencestuff
  3. ryanbroadley reblogged this from anthrocentric
  4. reflectionsbach reblogged this from scienceetfiction
  5. ihasquestions reblogged this from laboratoryequipment
  6. raw-r-evolution reblogged this from dermoosealini and added:
    use high octane and you will burn the gaskets
  7. crotchedyoldlady reblogged this from anthrocentric
  8. onimoz reblogged this from laboratoryequipment
  9. bag-of-crazy reblogged this from laboratoryequipment
  10. j-0112358 reblogged this from anthrocentric
  11. dermoosealini reblogged this from neurosciencestuff
  12. pandaemoniumpancakes reblogged this from anthrocentric
  13. hotdogcephalopod reblogged this from laboratoryequipment
  14. typicaltina reblogged this from anthrocentric
  15. cheesecakes777 reblogged this from laboratoryequipment
  16. expecto-bona-libros reblogged this from anthrocentric
  17. anthrocentric reblogged this from laboratoryequipment
  18. pbarns123 reblogged this from neurosciencestuff
  19. thebiobabe reblogged this from laboratoryequipment
  20. blue-is-blau reblogged this from laboratoryequipment
  21. laboratoryequipment reblogged this from scienceetfiction
  22. jamenijamjam reblogged this from scienceetfiction and added:
    Don’t really like the idea of zapping my brain in the first place o_O
  23. andysere reblogged this from scienceetfiction
  24. lyrslair reblogged this from notastupidape and added:
    This actually doesn’t surprise me. Even without alteration, think of the fact that genius level IQ above a certain point...
free counters