Neuroscience

Articles and news from the latest research reports.

73 notes

A proposed link between aging, autism, and oxidation
Like any fac­tory, the body burns oxygen to get energy for its var­ious needs. As a result, detri­mental byprod­ucts are released and our cells try to clean up shop with antiox­i­dants. But as we age, this process becomes a losing battle.
“Oxi­da­tion inex­orably moves us along toward an oxi­dized state,” said phar­ma­ceu­tical sci­ences pro­fessor Richard Deth. “You have to deal with it progressively.”
One option is to slow down the syn­thesis of new pro­teins, a process that requires energy. Indeed, as we age, we pro­duce fewer new pro­teins, which explains why our capacity for learning and healing suffer as we grow old.
Since every pro­tein orig­i­nates from instruc­tions in the DNA, pro­tein syn­thesis can be slowed down by turning off par­tic­ular genes. A process called epi­ge­netic reg­u­la­tion accom­plishes the task by adding mol­e­c­ular tags on top of the genome. The pro­tein methio­nine syn­thase reg­u­lates this process. But what reg­u­lates methio­nine syn­thase? Oxidation.
“This enzyme is the most easily oxi­dized mol­e­cule in the body,” said Deth, whose research on the sub­ject was recently pub­lished in the journal PLOS ONE. The senior author for the study, Christina Mura­tore, received her doc­torate in phar­ma­ceu­tical sci­ences from North­eastern in 2010.
When­ever the body is under oxida­tive stress, Deth explained, methio­nine syn­thase, or MS, stops working. He and his team hypoth­e­sized that MS plays an impor­tant reg­u­la­tory role in aging and that it might be impaired in autism, which Deth has con­nected to unchecked oxida­tive stress in pre­vious research.
To examine their hypoth­esis, the researchers looked at post­mortem human brain sam­ples across the lifespan, with sub­jects as young as 28 weeks of fetal devel­op­ment to as old as 84 years. They mea­sured the levels of a mol­e­cule called MS mRNA, which tran­scribes the genetic code for methio­nine syn­thase into actual protein.
As the sub­jects aged, their brain tissue showed lower levels of MS mRNA. But, sur­pris­ingly, the levels of the pro­tein itself remained con­stant across the lifespan.
Deth and his col­leagues sus­pect that this observed decrease in MS mRNA over our lives may act as a check in the system to save energy that we no longer have in plen­tiful supply and to slow down oxida­tive stress. “One way that the system can guard against too much pro­tein syn­thesis is to restrict the amount of mRNA,” Deth said.
The team also com­pared MS pro­tein and mRNA levels between brain tissue sam­ples from autistic and nor­mally devel­oping sub­jects. Autistic brains had markedly less MS mRNA than the con­trol sam­ples but sim­ilar pro­tein levels. Addi­tion­ally, the age-​​dependent trend seen in nor­mally devel­oping brains was not mim­icked among the autistic sample.
If decreased MS mRNA does mean decreased pro­tein pro­duc­tion, it’s no big deal for adults who don’t need to make new pro­teins as often. But for the devel­oping brain, new pro­teins are crit­ical. “Your capacity for learning might be pre­ma­turely reduced because meta­bol­i­cally you can’t afford it,” Deth suggested.
While the results are pre­lim­i­nary and will ben­efit from repeated studies and more inves­ti­ga­tion, Deth’s find­ings add to a growing body of evi­dence linking both aging and autism to oxida­tive stress.

A proposed link between aging, autism, and oxidation

Like any fac­tory, the body burns oxygen to get energy for its var­ious needs. As a result, detri­mental byprod­ucts are released and our cells try to clean up shop with antiox­i­dants. But as we age, this process becomes a losing battle.

“Oxi­da­tion inex­orably moves us along toward an oxi­dized state,” said phar­ma­ceu­tical sci­ences pro­fessor Richard Deth. “You have to deal with it progressively.”

One option is to slow down the syn­thesis of new pro­teins, a process that requires energy. Indeed, as we age, we pro­duce fewer new pro­teins, which explains why our capacity for learning and healing suffer as we grow old.

Since every pro­tein orig­i­nates from instruc­tions in the DNA, pro­tein syn­thesis can be slowed down by turning off par­tic­ular genes. A process called epi­ge­netic reg­u­la­tion accom­plishes the task by adding mol­e­c­ular tags on top of the genome. The pro­tein methio­nine syn­thase reg­u­lates this process. But what reg­u­lates methio­nine syn­thase? Oxidation.

“This enzyme is the most easily oxi­dized mol­e­cule in the body,” said Deth, whose research on the sub­ject was recently pub­lished in the journal PLOS ONE. The senior author for the study, Christina Mura­tore, received her doc­torate in phar­ma­ceu­tical sci­ences from North­eastern in 2010.

When­ever the body is under oxida­tive stress, Deth explained, methio­nine syn­thase, or MS, stops working. He and his team hypoth­e­sized that MS plays an impor­tant reg­u­la­tory role in aging and that it might be impaired in autism, which Deth has con­nected to unchecked oxida­tive stress in pre­vious research.

To examine their hypoth­esis, the researchers looked at post­mortem human brain sam­ples across the lifespan, with sub­jects as young as 28 weeks of fetal devel­op­ment to as old as 84 years. They mea­sured the levels of a mol­e­cule called MS mRNA, which tran­scribes the genetic code for methio­nine syn­thase into actual protein.

As the sub­jects aged, their brain tissue showed lower levels of MS mRNA. But, sur­pris­ingly, the levels of the pro­tein itself remained con­stant across the lifespan.

Deth and his col­leagues sus­pect that this observed decrease in MS mRNA over our lives may act as a check in the system to save energy that we no longer have in plen­tiful supply and to slow down oxida­tive stress. “One way that the system can guard against too much pro­tein syn­thesis is to restrict the amount of mRNA,” Deth said.

The team also com­pared MS pro­tein and mRNA levels between brain tissue sam­ples from autistic and nor­mally devel­oping sub­jects. Autistic brains had markedly less MS mRNA than the con­trol sam­ples but sim­ilar pro­tein levels. Addi­tion­ally, the age-​​dependent trend seen in nor­mally devel­oping brains was not mim­icked among the autistic sample.

If decreased MS mRNA does mean decreased pro­tein pro­duc­tion, it’s no big deal for adults who don’t need to make new pro­teins as often. But for the devel­oping brain, new pro­teins are crit­ical. “Your capacity for learning might be pre­ma­turely reduced because meta­bol­i­cally you can’t afford it,” Deth suggested.

While the results are pre­lim­i­nary and will ben­efit from repeated studies and more inves­ti­ga­tion, Deth’s find­ings add to a growing body of evi­dence linking both aging and autism to oxida­tive stress.

Filed under brain oxidation autism brain tissue lifespan antioxidants protein synthesis aging medicine science

  1. cyborgsdonthavetimeforthat reblogged this from neurosciencestuff
  2. hooseporp reblogged this from neurosciencestuff
  3. m-smegmatis reblogged this from neurosciencestuff
  4. darkindiee3 reblogged this from neurosciencestuff
  5. justtdustt reblogged this from neurosciencestuff
  6. ashtar-sheran reblogged this from neurosciencestuff
  7. the-electric-boogaloo reblogged this from neurosciencestuff
  8. sexysamosa reblogged this from neurosciencestuff
  9. suedwind reblogged this from neurosciencestuff
  10. bzz-bzz-bzz reblogged this from neurosciencestuff
  11. jardineraindoor reblogged this from neurosciencestuff
  12. graceevolved reblogged this from neurosciencestuff
  13. naalamana reblogged this from neurosciencestuff
  14. bauhausparenting reblogged this from neurosciencestuff
free counters