Neuroscience

Articles and news from the latest research reports.

48 notes

UCSB Study of Cocaine Addiction Reveals Targets for Treatment
Scientists at UC Santa Barbara are researching cocaine addiction, part of a widespread problem, which, along with other addictions, costs billions of dollars in damage to individuals, families, and society. Laboratory studies at UCSB have revealed that the diminished brain function and learning impairment that result from cocaine addiction can be treated –– and that learning can be restored.
Karen Szumlinski, a professor in the Department of Psychological & Brain Sciences at UCSB, and her colleagues Osnat Ben-Shahar and Tod Kippin, have worked in the field of addiction for many years. Senior author of a paper on this topic published recently in The Journal of Neuroscience, Szumlinski is particularly interested in the part of the brain called the prefrontal cortex, where the process of “executive function” –– or decision-making –– is located. This area is involved in directing one’s behavior in an appropriate manner, and in controlling behavior.
With her research team, Szumlinski discovered that a drug that stimulates a certain type of glutamate receptor –– when aimed at the prefrontal cortex –– could restore learning impairment in rats with simulated cocaine addiction.
"Needless to say, this (the prefrontal cortex) is one of the last parts of the brain to develop, and, of relevance to our students, continues to develop through about age 25 to 28," said Szumlinski.
Szumlinski explained that in the prefrontal cortex there seems to be “hypo-frontality,” or reduced functioning, in drug addicts, as well as in patients with a range of neuropsychiatric diseases, including schizophrenia, depression, and attention deficit disorder.
Szumlinski calls the prefrontal cortex a late-developing brain area that is critical for making proper decisions, and inhibiting behavior. “You damage this brain region and you lose the ability to self-regulate, you make impulsive decisions like engaging in risky sexual behavior or drug-taking, you basically go off the deep end in terms of function,” she said. “So we were very much interested in how drugs of abuse impact the prefrontal cortex, given that human drug addicts show deficits in this brain area when you put them into a scanner. They show hypo-activity.” She said this hypo-activity, or hypo-frontality, might relate to a neurotransmitter that scientists know is involved in exciting the brain.
A key question, according to Szumlinski, is this: “Was that hypo-frontality there in the first place, and that’s why they became an addict; or did the drugs change their prefrontal cortext, to cause it to become hypo-functioning and thus they’re not able to control their drug use? You can’t parse that out in humans. So that’s why we turn then to animal models of the disorder, and we do have this rat model that we use in the paper.”
Szumlinski pointed out a key difficulty in the development of treatments for addiction: There is little money targeted to the study of this disease. Hence, in addition to studying the brain mechanisms that are involved, she is joining forces with researchers who study other neurological diseases that are well-funded, to help find cures. She hopes that government approval of new drugs for these other diseases would eventually make the drugs available for clinical trials to study their effects on cocaine addiction.
(Image: iStock)

UCSB Study of Cocaine Addiction Reveals Targets for Treatment

Scientists at UC Santa Barbara are researching cocaine addiction, part of a widespread problem, which, along with other addictions, costs billions of dollars in damage to individuals, families, and society. Laboratory studies at UCSB have revealed that the diminished brain function and learning impairment that result from cocaine addiction can be treated –– and that learning can be restored.

Karen Szumlinski, a professor in the Department of Psychological & Brain Sciences at UCSB, and her colleagues Osnat Ben-Shahar and Tod Kippin, have worked in the field of addiction for many years. Senior author of a paper on this topic published recently in The Journal of Neuroscience, Szumlinski is particularly interested in the part of the brain called the prefrontal cortex, where the process of “executive function” –– or decision-making –– is located. This area is involved in directing one’s behavior in an appropriate manner, and in controlling behavior.

With her research team, Szumlinski discovered that a drug that stimulates a certain type of glutamate receptor –– when aimed at the prefrontal cortex –– could restore learning impairment in rats with simulated cocaine addiction.

"Needless to say, this (the prefrontal cortex) is one of the last parts of the brain to develop, and, of relevance to our students, continues to develop through about age 25 to 28," said Szumlinski.

Szumlinski explained that in the prefrontal cortex there seems to be “hypo-frontality,” or reduced functioning, in drug addicts, as well as in patients with a range of neuropsychiatric diseases, including schizophrenia, depression, and attention deficit disorder.

Szumlinski calls the prefrontal cortex a late-developing brain area that is critical for making proper decisions, and inhibiting behavior. “You damage this brain region and you lose the ability to self-regulate, you make impulsive decisions like engaging in risky sexual behavior or drug-taking, you basically go off the deep end in terms of function,” she said. “So we were very much interested in how drugs of abuse impact the prefrontal cortex, given that human drug addicts show deficits in this brain area when you put them into a scanner. They show hypo-activity.” She said this hypo-activity, or hypo-frontality, might relate to a neurotransmitter that scientists know is involved in exciting the brain.

A key question, according to Szumlinski, is this: “Was that hypo-frontality there in the first place, and that’s why they became an addict; or did the drugs change their prefrontal cortext, to cause it to become hypo-functioning and thus they’re not able to control their drug use? You can’t parse that out in humans. So that’s why we turn then to animal models of the disorder, and we do have this rat model that we use in the paper.”

Szumlinski pointed out a key difficulty in the development of treatments for addiction: There is little money targeted to the study of this disease. Hence, in addition to studying the brain mechanisms that are involved, she is joining forces with researchers who study other neurological diseases that are well-funded, to help find cures. She hopes that government approval of new drugs for these other diseases would eventually make the drugs available for clinical trials to study their effects on cocaine addiction.

(Image: iStock)

Filed under cocaine addiction brain function learning impairment prefrontal cortex neuroscience science

  1. fxckyou-slut reblogged this from neurosciencestuff
  2. occupyreality reblogged this from neurosciencestuff
  3. ppperla-a reblogged this from neurosciencestuff
  4. andrisland reblogged this from neurosciencestuff
  5. out-of-my-cuntroll reblogged this from neurosciencestuff
  6. dermoosealini reblogged this from neurosciencestuff
  7. kmayemilia reblogged this from neurosciencestuff
  8. sbgyatso reblogged this from neurosciencestuff
  9. edu-ca-tion reblogged this from neurosciencestuff
  10. erasethestigma reblogged this from neurosciencestuff
  11. ashtar-sheran reblogged this from neurosciencestuff
  12. themesfin reblogged this from neurosciencestuff and added:
    looks like i just found out what college i’m going to
  13. chemistatoxinf reblogged this from neurosciencestuff
  14. heavenbegatshell reblogged this from neurosciencestuff
  15. anyssa23 reblogged this from neurosciencestuff
  16. aznhobbitmedstudent2b reblogged this from neurosciencestuff
  17. titerezi reblogged this from neurosciencestuff
  18. pammapple reblogged this from neurosciencestuff
  19. fromtheweirdtotheinsane reblogged this from neurosciencestuff
  20. neurosciencestuff posted this
free counters