Neuroscience

Articles and news from the latest research reports.

219 notes

Scientists discover how epigenetic information could be inherited
New research reveals a potential way for how parents’ experiences could be passed to their offspring’s genes. The research was published in the journal Science.
Epigenetics is a system that turns our genes on and off. The process works by chemical tags, known as epigenetic marks, attaching to DNA and telling a cell to either use or ignore a particular gene.
The most common epigenetic mark is a methyl group. When these groups fasten to DNA through a process called methylation they block the attachment of proteins which normally turn the genes on. As a result, the gene is turned off.
Scientists have witnessed epigenetic inheritance, the observation that offspring may inherit altered traits due to their parents’ past experiences. For example, historical incidences of famine have resulted in health effects on the children and grandchildren of individuals who had restricted diets, possibly because of inheritance of altered epigenetic marks caused by a restricted diet.
However, it is thought that between each generation the epigenetic marks are erased in cells called primordial gene cells (PGC), the precursors to sperm and eggs. This ‘reprogramming’ allows all genes to be read afresh for each new person – leaving scientists to question how epigenetic inheritance could occur.
The new Cambridge study initially discovered how the DNA methylation marks are erased in PGCs, a question that has been under intense investigation over the past 10 years. The methylation marks are converted to hydroxymethylation which is then progressively diluted out as the cells divide. This process turns out to be remarkably efficient and seems to reset the genes for each new generation. Understanding the mechanism of epigenetic resetting could be exploited to deal with adult diseases linked with an accumulation of aberrant epigenetic marks, such as cancers, or in ‘rejuvenating’ aged cells.
However, the researchers, who were funded by the Wellcome Trust, also found that some rare methylation can ‘escape’ the reprogramming process and can thus be passed on to offspring – revealing how epigenetic inheritance could occur. This is important because aberrant methylation could accumulate at genes during a lifetime in response to environmental factors, such as chemical exposure or nutrition, and can cause abnormal use of genes, leading to disease. If these marks are then inherited by offspring, their genes could also be affected.

Scientists discover how epigenetic information could be inherited

New research reveals a potential way for how parents’ experiences could be passed to their offspring’s genes. The research was published in the journal Science.

Epigenetics is a system that turns our genes on and off. The process works by chemical tags, known as epigenetic marks, attaching to DNA and telling a cell to either use or ignore a particular gene.

The most common epigenetic mark is a methyl group. When these groups fasten to DNA through a process called methylation they block the attachment of proteins which normally turn the genes on. As a result, the gene is turned off.

Scientists have witnessed epigenetic inheritance, the observation that offspring may inherit altered traits due to their parents’ past experiences. For example, historical incidences of famine have resulted in health effects on the children and grandchildren of individuals who had restricted diets, possibly because of inheritance of altered epigenetic marks caused by a restricted diet.

However, it is thought that between each generation the epigenetic marks are erased in cells called primordial gene cells (PGC), the precursors to sperm and eggs. This ‘reprogramming’ allows all genes to be read afresh for each new person – leaving scientists to question how epigenetic inheritance could occur.

The new Cambridge study initially discovered how the DNA methylation marks are erased in PGCs, a question that has been under intense investigation over the past 10 years. The methylation marks are converted to hydroxymethylation which is then progressively diluted out as the cells divide. This process turns out to be remarkably efficient and seems to reset the genes for each new generation. Understanding the mechanism of epigenetic resetting could be exploited to deal with adult diseases linked with an accumulation of aberrant epigenetic marks, such as cancers, or in ‘rejuvenating’ aged cells.

However, the researchers, who were funded by the Wellcome Trust, also found that some rare methylation can ‘escape’ the reprogramming process and can thus be passed on to offspring – revealing how epigenetic inheritance could occur. This is important because aberrant methylation could accumulate at genes during a lifetime in response to environmental factors, such as chemical exposure or nutrition, and can cause abnormal use of genes, leading to disease. If these marks are then inherited by offspring, their genes could also be affected.

Filed under epigenetics genes inheritance DNA primordial gene cells DNA methylation science

  1. bitsofalmost reblogged this from welcome2myadventure
  2. welcome2myadventure reblogged this from paradoxicalparadigms
  3. etherealerrors reblogged this from neurosciencestuff
  4. chiataur reblogged this from sagansense
  5. lovely-paranormal reblogged this from shanehelmscom
  6. laikas-owner reblogged this from sagansense
  7. lilyaquarius reblogged this from hell-yeah-holly
  8. naytile reblogged this from sagansense
  9. selfproxy reblogged this from mysticalshamanjosh
  10. hell-yeah-holly reblogged this from shanehelmscom
  11. luckistar reblogged this from shanehelmscom
  12. mykonos-slavi reblogged this from sagansense and added:
    Fascinating.
  13. consumedbychagrin reblogged this from sagansense
  14. dixiewildflower reblogged this from shanehelmscom
  15. shanehelmscom reblogged this from sagansense and added:
    I wrote a “hypothesis” in college based loosely on this idea. My paper was to explain Reincarnation. That we’re not...
  16. browncoat-banner reblogged this from 51pegasi-b
  17. mysticalshamanjosh reblogged this from sagansense
  18. secondtrainofthought reblogged this from sagansense
  19. renatostoteles reblogged this from sagansense
  20. 51pegasi-b reblogged this from sagansense
  21. tmblrbookmarks reblogged this from sagansense
  22. because-they-always-fall reblogged this from sagansense
  23. hiperballls reblogged this from sagansense and added:
    MUST READ
  24. sagansense reblogged this from neurosciencestuff
  25. dead--and--alive reblogged this from neurosciencestuff
  26. catpeas reblogged this from neurosciencestuff
  27. spectralysis reblogged this from cynicallyill
free counters