Neuroscience

Articles and news from the latest research reports.

149 notes

Stem Cell Research Helps to Identify Origins of Schizophrenia
New University at Buffalo research demonstrates how defects in an important neurological pathway in early development may be responsible for the onset of schizophrenia later in life.
The UB findings, published in Schizophrenia Research, test the hypothesis in a new mouse model of schizophrenia that demonstrates how gestational brain changes cause behavioral problems later in life – just like the human disease.
Partial funding for the research came from New York Stem Cell Science (NYSTEM).
The genomic pathway, called the Integrative Nuclear FGFR 1 Signaling (INFS), is a central intersection point for multiple pathways of as many as 160 different genes believed to be involved in the disorder. 
“We believe this is the first model that explains schizophrenia from genes to development to brain structure and finally to behavior,” says lead author Michal Stachowiak, PhD, professor in the Department of Pathology and Anatomical Sciences in the UB School of Medicine and Biomedical Sciences. He also is director of the Stem Cell Engraftment & In Vivo Analysis Facility at the Western New York Stem Cell Culture and Analysis Center at UB.
A key challenge with the disease is that patients with schizophrenia exhibit mutations in different genes, he says.
“How is it possible to have 100 patients with schizophrenia and each one has a different genetic mutation that causes the disorder?” asks Stachowiak. “It’s possible because INFS integrates diverse neurological signals that control the development of embryonic stem cell and neural progenitor cells, and links pathways involving schizophrenia-linked genes.
“INFS functions like the conductor of an orchestra,” explains Stachowiak. “It doesn’t matter which musician is playing the wrong note, it brings down the conductor and the whole orchestra. With INFS, we propose that when there is an alteration or mutation in a single schizophrenia-linked gene, the INFS system that controls development of the whole brain becomes untuned. That’s how schizophrenia develops.”
Using embryonic stem cells, Stachowiak and colleagues at UB and other institutions found that some of the genes implicated in schizophrenia bind the FGFR1 (fibroblast growth factor receptor) protein, which in turn, has a cascading effect on the entire INFS.

Stem Cell Research Helps to Identify Origins of Schizophrenia

New University at Buffalo research demonstrates how defects in an important neurological pathway in early development may be responsible for the onset of schizophrenia later in life.

The UB findings, published in Schizophrenia Research, test the hypothesis in a new mouse model of schizophrenia that demonstrates how gestational brain changes cause behavioral problems later in life – just like the human disease.

Partial funding for the research came from New York Stem Cell Science (NYSTEM).

The genomic pathway, called the Integrative Nuclear FGFR 1 Signaling (INFS), is a central intersection point for multiple pathways of as many as 160 different genes believed to be involved in the disorder. 

“We believe this is the first model that explains schizophrenia from genes to development to brain structure and finally to behavior,” says lead author Michal Stachowiak, PhD, professor in the Department of Pathology and Anatomical Sciences in the UB School of Medicine and Biomedical Sciences. He also is director of the Stem Cell Engraftment & In Vivo Analysis Facility at the Western New York Stem Cell Culture and Analysis Center at UB.

A key challenge with the disease is that patients with schizophrenia exhibit mutations in different genes, he says.

“How is it possible to have 100 patients with schizophrenia and each one has a different genetic mutation that causes the disorder?” asks Stachowiak. “It’s possible because INFS integrates diverse neurological signals that control the development of embryonic stem cell and neural progenitor cells, and links pathways involving schizophrenia-linked genes.

“INFS functions like the conductor of an orchestra,” explains Stachowiak. “It doesn’t matter which musician is playing the wrong note, it brings down the conductor and the whole orchestra. With INFS, we propose that when there is an alteration or mutation in a single schizophrenia-linked gene, the INFS system that controls development of the whole brain becomes untuned. That’s how schizophrenia develops.”

Using embryonic stem cells, Stachowiak and colleagues at UB and other institutions found that some of the genes implicated in schizophrenia bind the FGFR1 (fibroblast growth factor receptor) protein, which in turn, has a cascading effect on the entire INFS.

Filed under brain brain structure schizophrenia animal model genetic mutation stem cells genetics science

  1. wennytime reblogged this from neurosciencestuff
  2. auti-stim reblogged this from neurosciencestuff
  3. scorpshirl reblogged this from scholasticendeavors
  4. skellingtonwellington reblogged this from squidbat
  5. mandsdrwandothershit reblogged this from dolleymassacure
  6. blindtricks reblogged this from neurosciencestuff
  7. stuffandnews reblogged this from -soma
  8. hyliankalmo reblogged this from -soma
  9. -soma reblogged this from neurosciencestuff
  10. exformational reblogged this from neurosciencestuff and added:
    YEAH
  11. george-allan reblogged this from neurosciencestuff
  12. edu-ca-tion reblogged this from neurosciencestuff
  13. izumiisozaki reblogged this from neurosciencestuff
  14. hawkeye20131 reblogged this from neurosciencestuff
  15. freedomfrieshellzyeah reblogged this from neurosciencestuff
  16. hemaris-diffinis reblogged this from neurosciencestuff
  17. estefferson reblogged this from starsaremymuse
  18. darkdemandingchild reblogged this from neurosciencestuff
  19. crossroadsbluess reblogged this from molecularlifesciences
  20. mingalingsings reblogged this from neurosciencestuff
free counters