Neuroscience

Articles and news from the latest research reports.

98 notes

Why good resolutions about taking up a physical activity can be hard to keep
The collective appraisal conducted by Inserm in 2008 highlighted the many preventive health benefits of regular physical activity. Such activity is limited, however, by our lifestyle in today’s industrial society. While varying degrees of physical inactivity may be partly explained by social causes, they are also rooted in biology.
“The inability to experience pleasure during physical activity, which is often quoted as one explanation why people partially or completely drop out of physical exercise programmes, is a clear sign that the biology of the nervous system is involved”, explains Francis Chaouloff.
But how exactly? The neurobiological mechanisms underlying physical inactivity had yet to be identified.
Francis Chaouloff (Giovanni Marsicano’s team at the NeuroCentre Magendie; Inserm joint research unit, Université Bordeaux Ségalen) and his team have now begun to decipher these mechanisms. Their work clearly identifies the endogenous cannabinoid (or endocannabinoid) system as playing a decisive role, in particular one of its brain receptors. This is by no means the first time that data has pointed to interactions between the endocannabinoid system, which is the target of delta9-tetrahydrocannabinol (the active ingredient of cannabis), and physical exercise. It was discovered ten years ago that physical exercise activated the endocannabinoid system in trained sportsmen, but its exact role remained a mystery for many years. Three years ago, the same research team in Bordeaux observed that when given the opportunity to use a running wheel, mutant mice lacking the CB1 cannabinoid receptor, which is the principal receptor of the endocannabinoid system in the brain, ran for a shorter time and over shorter distances than healthy mice. The research published in Biological Psychiatry this month seeks to understand how, where and why the lack of CB1 receptor reduces voluntary exercise performance (by 20 to 30%) in mice allowed access to a running wheel three hours per day.
The researchers used various lines of mutant mice for the CB1 receptor, together with pharmacological tools. They began by demonstrating that the CB1 receptor controlling running performance is located at the GABAergic nerve endings. They went on to show that the receptor is located in the ventral tegmental area of the brain, which is an area involved in motivational processes relating to reward, whether the reward is natural (food, sex) or associated with the consumption of psychoactive substances.

Why good resolutions about taking up a physical activity can be hard to keep

The collective appraisal conducted by Inserm in 2008 highlighted the many preventive health benefits of regular physical activity. Such activity is limited, however, by our lifestyle in today’s industrial society. While varying degrees of physical inactivity may be partly explained by social causes, they are also rooted in biology.

“The inability to experience pleasure during physical activity, which is often quoted as one explanation why people partially or completely drop out of physical exercise programmes, is a clear sign that the biology of the nervous system is involved”, explains Francis Chaouloff.

But how exactly? The neurobiological mechanisms underlying physical inactivity had yet to be identified.

Francis Chaouloff (Giovanni Marsicano’s team at the NeuroCentre Magendie; Inserm joint research unit, Université Bordeaux Ségalen) and his team have now begun to decipher these mechanisms. Their work clearly identifies the endogenous cannabinoid (or endocannabinoid) system as playing a decisive role, in particular one of its brain receptors. This is by no means the first time that data has pointed to interactions between the endocannabinoid system, which is the target of delta9-tetrahydrocannabinol (the active ingredient of cannabis), and physical exercise. It was discovered ten years ago that physical exercise activated the endocannabinoid system in trained sportsmen, but its exact role remained a mystery for many years. Three years ago, the same research team in Bordeaux observed that when given the opportunity to use a running wheel, mutant mice lacking the CB1 cannabinoid receptor, which is the principal receptor of the endocannabinoid system in the brain, ran for a shorter time and over shorter distances than healthy mice. The research published in Biological Psychiatry this month seeks to understand how, where and why the lack of CB1 receptor reduces voluntary exercise performance (by 20 to 30%) in mice allowed access to a running wheel three hours per day.

The researchers used various lines of mutant mice for the CB1 receptor, together with pharmacological tools. They began by demonstrating that the CB1 receptor controlling running performance is located at the GABAergic nerve endings. They went on to show that the receptor is located in the ventral tegmental area of the brain, which is an area involved in motivational processes relating to reward, whether the reward is natural (food, sex) or associated with the consumption of psychoactive substances.

Filed under cannabinoids endocannabinoid system neurotransmitters physical activity physical exercise neuroscience science

  1. spiralling-gangs reblogged this from neurosciencestuff
  2. berlianroma reblogged this from neurosciencestuff
  3. carboman23 reblogged this from neurosciencestuff
  4. whenlifehandsyoualemon reblogged this from sagansense
  5. historicalobserver reblogged this from sagansense
  6. sagansense reblogged this from neurosciencestuff
  7. saraahlynne reblogged this from neurosciencestuff
  8. dermoosealini reblogged this from neurosciencestuff
  9. em-pt-ily reblogged this from neurosciencestuff
  10. serahrivera reblogged this from mingalingsings
  11. mingalingsings reblogged this from neurosciencestuff and added:
    Nooooo
  12. biognosis reblogged this from neurosciencestuff
  13. a-deeper-sleep reblogged this from neurosciencestuff
  14. neurobiopsychology reblogged this from neurosciencestuff
  15. freedomfrieshellzyeah reblogged this from neurosciencestuff
  16. kosaddiq reblogged this from neurosciencestuff
  17. letsgetcozy reblogged this from neurosciencestuff
  18. arcticdoll reblogged this from neurosciencestuff and added:
    SO ya… I’m starting back at the gym tomorrow, I promise.
  19. frothylaughter reblogged this from neurosciencestuff
free counters