Neuroscience

Articles and news from the latest research reports.

73 notes

Rainfall, brain infection linked in sub-Saharan Africa
The amount of rainfall affects the number of infant infections leading to hydrocephalus in Uganda, according to a team of researchers who are the first to demonstrate that these brain infections are linked to climate.
Hydrocephalus — literally “water on the brain” — is characterized by the buildup of the fluid that is normally within and surrounding the brain, leading to brain swelling. The swelling will cause brain damage or death if not treated. Even if treated, there is only a one-third chance of a child maintaining a normal life after post-infectious hydrocephalus develops, and that chance is dependent on whether the child has received the best treatment possible.
"The most common need for a child to require neurosurgery around the world is hydrocephalus," said Steven J. Schiff, the Brush Chair Professor of Engineering, director of the Penn State Center for Neural Engineering and a team member.
In sub-Saharan Africa, upward of 100,000 cases of post-infectious hydrocephalus a year are estimated to occur. The majority of these cases occur after a newborn has suffered from neonatal sepsis, a blood infection that occurs within the first four weeks of life, the researchers reported in a recent issue of the Journal of Neurosurgery: Pediatrics.
Benjamin C. Warf, associate professor of neurosurgery, Harvard Medical School, Boston Children’s Hospital, noticed that about three or four months after an infant in East Africa had an infection like neonatal sepsis, the child would often return to the clinic with a rapidly growing head — hydrocephalus. Schiff joined Warf to help figure out what caused this disease so frequently.
Schiff and colleagues tracked 696 hydrocephalus cases in Ugandan infants between the years 2000 and 2005. The researchers obtained localized rainfall data for the same time frame through NOAA (National Oceanic and Atmospheric Administration) weather satellites using the African Rainfall Estimation Algorithm developed at the U.S. NOAA Climate Prediction Center.
Uganda has two peak rainfall seasons, in spring and fall. By comparing the data from NOAA and the hydrocephalus cases, the researchers found that instances of the disorder rose significantly at four different times throughout the year — before and after the peak of each rainy season, when the amount of rainfall was at intermediate levels. In Uganda an intermediate rainfall is about 6 inches of rain per month.
Schiff and colleagues previously noted that different bacteria appear associated with post-infectious hydrocephalus at different seasons of the year. While the researchers have not yet characterized the full spectrum of bacteria causing hydrocephalus in so many infants, they note that environmental conditions affect conditions supporting bacterial growth, and that the amount of rain can quench bacterial infections. The moisture level clearly affects the number of cases of hydrocephalus in this region of East Africa.
"Hydrocephalus is the first major neurosurgical condition linked to climate," said Schiff, who is also professor of neurosurgery, engineering science and mechanics, and physics, and a faculty member of the Huck Institutes of the Life Sciences. "This means that a substantial component of these cases are almost certainly driven from the environmental conditions, and that means they are potentially preventable if we understand the routes and mechanisms of infection better."

Rainfall, brain infection linked in sub-Saharan Africa

The amount of rainfall affects the number of infant infections leading to hydrocephalus in Uganda, according to a team of researchers who are the first to demonstrate that these brain infections are linked to climate.

Hydrocephalus — literally “water on the brain” — is characterized by the buildup of the fluid that is normally within and surrounding the brain, leading to brain swelling. The swelling will cause brain damage or death if not treated. Even if treated, there is only a one-third chance of a child maintaining a normal life after post-infectious hydrocephalus develops, and that chance is dependent on whether the child has received the best treatment possible.

"The most common need for a child to require neurosurgery around the world is hydrocephalus," said Steven J. Schiff, the Brush Chair Professor of Engineering, director of the Penn State Center for Neural Engineering and a team member.

In sub-Saharan Africa, upward of 100,000 cases of post-infectious hydrocephalus a year are estimated to occur. The majority of these cases occur after a newborn has suffered from neonatal sepsis, a blood infection that occurs within the first four weeks of life, the researchers reported in a recent issue of the Journal of Neurosurgery: Pediatrics.

Benjamin C. Warf, associate professor of neurosurgery, Harvard Medical School, Boston Children’s Hospital, noticed that about three or four months after an infant in East Africa had an infection like neonatal sepsis, the child would often return to the clinic with a rapidly growing head — hydrocephalus. Schiff joined Warf to help figure out what caused this disease so frequently.

Schiff and colleagues tracked 696 hydrocephalus cases in Ugandan infants between the years 2000 and 2005. The researchers obtained localized rainfall data for the same time frame through NOAA (National Oceanic and Atmospheric Administration) weather satellites using the African Rainfall Estimation Algorithm developed at the U.S. NOAA Climate Prediction Center.

Uganda has two peak rainfall seasons, in spring and fall. By comparing the data from NOAA and the hydrocephalus cases, the researchers found that instances of the disorder rose significantly at four different times throughout the year — before and after the peak of each rainy season, when the amount of rainfall was at intermediate levels. In Uganda an intermediate rainfall is about 6 inches of rain per month.

Schiff and colleagues previously noted that different bacteria appear associated with post-infectious hydrocephalus at different seasons of the year. While the researchers have not yet characterized the full spectrum of bacteria causing hydrocephalus in so many infants, they note that environmental conditions affect conditions supporting bacterial growth, and that the amount of rain can quench bacterial infections. The moisture level clearly affects the number of cases of hydrocephalus in this region of East Africa.

"Hydrocephalus is the first major neurosurgical condition linked to climate," said Schiff, who is also professor of neurosurgery, engineering science and mechanics, and physics, and a faculty member of the Huck Institutes of the Life Sciences. "This means that a substantial component of these cases are almost certainly driven from the environmental conditions, and that means they are potentially preventable if we understand the routes and mechanisms of infection better."

Filed under brain brain damage hydrocephalus neonatal sepsis rainfall medicine science

  1. hiddenprince44 reblogged this from neurosciencestuff
  2. figuringitoutasigoalong reblogged this from ashynarr
  3. ashynarr reblogged this from neurosciencestuff
  4. black-plus-blue reblogged this from neurosciencestuff
  5. biognosis reblogged this from neurosciencestuff
  6. scientificthought reblogged this from biognosis
  7. flaw-nocturne reblogged this from neurosciencestuff
  8. blackgirlscientist reblogged this from neurosciencestuff
  9. original-hsin reblogged this from neurosciencestuff
  10. constant-comets reblogged this from neurosciencestuff
  11. graceevolved reblogged this from neurosciencestuff
  12. ambiguous-genitalia reblogged this from neurosciencestuff
  13. rrrsha reblogged this from neurosciencestuff
  14. nyctophilicaudiophiliac reblogged this from neurosciencestuff
  15. forevereatingmyfeelings reblogged this from neurosciencestuff
  16. sadisticgrandma reblogged this from neurosciencestuff
  17. shake-downstreet reblogged this from neurosciencestuff
  18. radicalrascality reblogged this from congenitalprogramming
  19. congenitalprogramming reblogged this from opus-pocus
  20. opus-pocus reblogged this from neurosciencestuff
  21. iloveseverus reblogged this from neurosciencestuff
  22. lophiel reblogged this from neurosciencestuff
  23. artmedandtypography reblogged this from neurosciencestuff
free counters